The World Society of the Abdominal Compartment Syndrome (www.wsacs.org) presents
Intra-abdominal Hypertension and the Abdominal Compartment Syndrome: Updated Consensus Definitions and Clinical Practice Guidelines from the World Society of the Abdominal Compartment Syndrome
Consensus Definitions
Table 1. Final 2012 Consensus Definitions of the World Society of the Abdominal Compartment Syndrome

<table>
<thead>
<tr>
<th>No.</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retained Definitions from the Original 2006 Consensus Statements [13]</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>IAP is the steady-state pressure concealed within the abdominal cavity.</td>
</tr>
<tr>
<td>2.</td>
<td>The reference standard for intermittent IAP measurements is via the bladder with a maximal instillation volume of 25 mL of sterile saline.</td>
</tr>
<tr>
<td>3.</td>
<td>IAP should be expressed in mmHg and measured at end-expiration in the complete supine position after ensuring that abdominal muscle contractions are absent and with the transducer zeroed at the level of the midaxillary line.</td>
</tr>
<tr>
<td>4.</td>
<td>IAP is approximately 5-7 mmHg in critically ill adults.</td>
</tr>
<tr>
<td>5.</td>
<td>IAH is defined by a sustained or repeated pathological elevation in IAP \geq 12 mmHg.</td>
</tr>
<tr>
<td>6.</td>
<td>ACS is defined as a sustained IAP > 20 mmHg (with or without an APP < 60 mmHg) that is associated with new organ dysfunction/failure.</td>
</tr>
</tbody>
</table>
| 7. | IAH is graded as follows:
 - Grade I, IAP 12-15 mmHg
 - Grade II, IAP 16-20 mmHg
 - Grade III, IAP 21-25 mmHg
 - Grade IV, IAP > 25 mmHg |
| 8. | Primary IAH or ACS is a condition associated with injury or disease in the abdominopelvic region that frequently requires early surgical or interventional radiological intervention. |
| 9. | Secondary IAH or ACS refers to conditions that do not originate from the abdominopelvic region. |
| 10. | Recurrent IAH or ACS refers to the condition in which ACS redevelops following previous surgical or medical treatment of primary or secondary ACS. |
| 11. | APP = MAP - IAP |
| **New Definitions Accepted by the 2012 Consensus Panel** |
| 12. | A poly-compartment syndrome is a condition where two or more anatomical compartments have elevated compartmental pressures. |
| 13. | Abdominal compliance quantifies the ease of abdominal expansion, is determined by the elasticity of the abdominal wall and diaphragm, and is expressed as the change in intra-abdominal volume per change in intra-abdominal pressure. |
| 14. | An open abdomen is any abdomen requiring a temporary abdominal closure due to the skin and fascia not being closed after laparotomy. The technique of temporary abdominal closure should be explicitly described. |
| 15. | Lateralization of the abdominal wall refers to the phenomenon whereby the musculature and fascia of the abdominal wall, most well seen by the rectus abdominus muscles and their enveloping fascia, move laterally away from the midline with time. |
Retained Definitions from the Original 2006 Consensus Statements\(^1\)

- 1) Intra-abdominal pressure (IAP) is the steady-state pressure concealed within the abdominal cavity.

\(^1\)Malbrain ML et al., Results from the International Conference of Experts on Intra-Abdominal hypertension and Abdominal Compartment Syndrome. I. Definitions, Intensive Care Medicine 2006;32:1722 -1732
Retained Definitions from the Original 2006 Consensus Statements

• 2) The reference standard for intermittent IAP measurements is via the bladder with a maximal instillation volume of 25 mL of sterile saline.

¹Malbrain ML et al., Results from the International Conference of Experts on Intra-Abdominal hypertension and Abdominal Compartment Syndrome. I. Definitions, Intensive Care Medicine 2006;32:1722 -1732
Retained Definitions from the Original 2006 Consensus Statements

- 3) IAP should be expressed in mmHg and measured at end-expiration in the complete supine position after ensuring that abdominal muscle contractions are absent and with the transducer zeroed at the level of the midaxillary line.

1Malbrain ML et al., Results from the International Conference of Experts on Intra-Abdominal hypertension and Abdominal Compartment Syndrome. I. Definitions, Intensive Care Medicine 2006;32:1722-1732
Retained Definitions from the Original 2006 Consensus Statements

4) The IAP is approximately 5-7 mmHg in critically ill adults

Malbrain ML et al., Results from the International Conference of Experts on Intra-Abdominal hypertension and Abdominal Compartment Syndrome. I. Definitions, Intensive Care Medicine 2006;32:1722-1732
Retained Definitions from the Original 2006 Consensus Statements

5) IAH is defined by a sustained or repeated pathological elevation in IAP ≥ 12 mmHg

1Malbrain ML et al., Results from the International Conference of Experts on Intra-Abdominal hypertension and Abdominal Compartment Syndrome. I. Definitions, Intensive Care Medicine 2006;32:1722 -1732
Retained Definitions from the Original 2006 Consensus Statements

• 6) ACS is defined as a sustained IAP > 20mmHg (with or without an APP < 60mmHg) that is associated with new organ dysfunction/failure

\(^1\)Malbrain ML et al., Results from the International Conference of Experts on Intra-Abdominal hypertension and Abdominal Compartment Syndrome. I. Definitions, Intensive Care Medicine 2006;32:1722 -1732
Retained Definitions from the Original 2006 Consensus Statements

7) IAH is graded as follows:

Grade I, IAP 12-15 mmHg
Grade II, IAP 16-20 mmHg
Grade III, IAP 21-25 mmHg
Grade IV, IAP > 25 mmHg

1Malbrain ML et al., Results from the International Conference of Experts on Intra-Abdominal hypertension and Abdominal Compartment Syndrome. I. Definitions, Intensive Care Medicine 2006;32:1722-1732
Retained Definitions from the Original 2006 Consensus Statements

8) Primary IAH or ACS is a condition associated with injury or disease in the abdominopelvic region that frequently requires early surgical or interventional radiological intervention

\(^1\)Malbrain ML et al., Results from the International Conference of Experts on Intra-Abdominal hypertension and Abdominal Compartment Syndrome. I. Definitions, Intensive Care Medicine 2006;32:1722-1732
9) Secondary IAH or ACS refers to conditions that do not originate from the abdominopelvic region.

\[1\text{Malbrain ML et al., Results from the International Conference of Experts on Intra-Abdominal hypertension and Abdominal Compartment Syndrome. I. Definitions, Intensive Care Medicine 2006;32:1722 -1732}\]
Retained Definitions from the Original 2006 Consensus Statements

• 10) Recurrent IAH or ACS refers to the condition in which ACS redevelops following previous surgical or medical treatment of primary or secondary ACS

1Malbrain ML et al., Results from the International Conference of Experts on Intra-Abdominal hypertension and Abdominal Compartment Syndrome. I. Definitions, Intensive Care Medicine 2006;32:1722-1732
Retained Definitions from the Original 2006 Consensus Statements

1) Abdominal perfusion pressure (APP) = Mean arterial pressure (MAP) – IAP

1Malbrain ML et al., Results from the International Conference of Experts on Intra-Abdominal hypertension and Abdominal Compartment Syndrome. I. Definitions, Intensive Care Medicine 2006;32:1722 -1732
Retained Definitions from the Original 2006 Consensus Statements

• 2) The reference standard for intermittent IAP measurements is via the bladder with a maximal instillation volume of 25 mL of sterile saline.

1Malbrain ML et al., Results from the International Conference of Experts on Intra-Abdominal hypertension and Abdominal Compartment Syndrome. I. Definitions, Intensive Care Medicine 2006;32:1722 -1732
New Definitions Accepted by the 2012 Consensus Panel
Retained Definitions from the Original 2006 Consensus Statements

1. 12) A poly-compartment syndrome is a condition where two or more anatomical compartments have elevated compartmental pressures.

1Malbrain ML et al., Results from the International Conference of Experts on Intra-Abdominal hypertension and Abdominal Compartment Syndrome. I. Definitions, Intensive Care Medicine 2006;32:1722 -1732
• 13) Abdominal compliance quantifies the ease of abdominal expansion, is determined by the elasticity of the abdominal wall and diaphragm, and is expressed as the change in intra-abdominal volume per change in intra-abdominal pressure.

1Malbrain ML et al., Results from the International Conference of Experts on Intra-Abdominal hypertension and Abdominal Compartment Syndrome. I. Definitions, Intensive Care Medicine 2006;32:1722 -1732
Retained Definitions from the Original 2006 Consensus Statements

14) An open abdomen is any abdomen requiring a temporary abdominal closure due to the skin and fascia not being closed after laparotomy. The technique of temporary abdominal closure should be explicitly described.

1Malbrain ML et al., Results from the International Conference of Experts on Intra-Abdominal hypertension and Abdominal Compartment Syndrome. I. Definitions, Intensive Care Medicine 2006;32:1722 -1732
Retained Definitions from the Original 2006 Consensus Statements

• 15) Lateralization of the abdominal wall refers to the phenomenon whereby the musculature and fascia of the abdominal wall, most well seen by the rectus abdominus muscles and their enveloping fascia, move laterally away from the midline with time.

1Malbrain ML et al., Results from the International Conference of Experts on Intra-Abdominal hypertension and Abdominal Compartment Syndrome. I. Definitions, Intensive Care Medicine 2006;32:1722-1732
Classification System for the Complexity of an Open Abdomen

<table>
<thead>
<tr>
<th>1 - No Fixation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A: Clean, no fixation</td>
</tr>
<tr>
<td>1B: Contaminated, no fixation</td>
</tr>
<tr>
<td>1C: Enteric leak, no fixation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2 - Developing Fixation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2A: Clean, developing fixation</td>
</tr>
<tr>
<td>2B: Contaminated, developing fixation</td>
</tr>
<tr>
<td>2C: Enteric leak, developing fixation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3 - Frozen Abdomen</th>
</tr>
</thead>
<tbody>
<tr>
<td>3A: Clean, frozen abdomen</td>
</tr>
<tr>
<td>3B: Contaminated, frozen abdomen</td>
</tr>
</tbody>
</table>

Established enteroatmospheric fistula

This is an update of the original Bjorck\(^1\) classification regarding the importance of an enteroatmospheric or enterocutaneous fistula in the open abdomen.

Consensus Management Statements
Final 2012 WSACS Consensus Management Statements

Recommendations

1. Measure IAP when any known risk factor for IAH/ACS is present in a critically ill or injured patient.
2. Studies should adopt current and accepted standard trans-bladder IAP measurement technique.
3. Protocolized monitoring and management of IAP should be utilized when caring for the critically ill or injured.
4. Efforts and/or protocols should be utilized to avoid sustained IAH in critically ill patients.
5. Efforts and/or protocols should be utilized to obtain early or at least same-hospital-stay abdominal fascial closure.
6. Use decompressive laparotomy to reduce IAP in cases of overt ACS.
7. Negative pressure wound therapy should be utilized to facilitate earlier abdominal fascial closure among those with open abdominal wounds.

Suggestions

1. Critically ill or injured patients should receive optimal pain and anxiety relief.
2. Brief trials of neuromuscular blockade may be used to temporize the treatment of IAH.
3. The potential contribution of body position in elevating IAP should be considered in patients with IAH or ACS.
4. Use a protocol to try and avoid a positive cumulative fluid balance in the critically ill patient with, or at risk of, IAH.
5. Use an enhanced ratio of plasma to packed red blood cells during resuscitation from massive hemorrhage.
6. Use percutaneous catheter drainage to remove fluid in those with IAH/ACS when this is technically possible and the alternative is doing nothing or a decompressive laparotomy.
7. Physiologically-exhausted post-trauma laparotomy patients should utilize a prophylactic open abdomen strategy.
8. Intraperitoneal contamination (even if severe) is not a sole indication for the routine or prophylactic use of an open abdomen technique.
9. Biologic meshes should not be routinely utilized to facilitate early acute fascial closure.

No Recommendations

1. No recommendation can be made regarding use of abdominal perfusion pressure as a resuscitation endpoint.
2. No recommendation can be made regarding use of diuretics for patients with IAH.
3. No recommendation can be made regarding use of renal replacement therapies for patients with IAH.
4. No recommendation can be made regarding administration of albumin to patients with IAH.
5. No recommendation can be made regarding use of the components separation technique for earlier abdominal fascial closure among patients with open abdominal wounds.
6. No recommendation can be made regarding use of the open abdomen in non-trauma acute care surgery patients with physiologic exhaustion.

ACS, abdominal compartment syndrome; IAP, intra-abdominal pressure; IAH, intra-abdominal hypertension.
Recommendations

- Updated consensus definitions and management statements were then derived using a modified Delphi method and the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) methodology. Quality of evidence was graded from high (A) to very low (D) and management statements from strong RECOMMENDATIONS (desirable effects clearly outweigh potential undesirable ones) to weaker SUGGESTIONS (potential risks and benefits of the intervention are less clear).
Consensus Management Statements - Recommendation

1) We RECOMMEND measuring intra-abdominal pressure versus not when any known risk factor for IAH/ACS is present in critically ill or injured patients\(^1\) (Unchanged Management Recommendation 1 [GRADE 1C]).

\(^1\)Risk Factors are presented in the next slide
<table>
<thead>
<tr>
<th>Evidence-based Risk Factors:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdominal surgery [1-3]</td>
</tr>
<tr>
<td>Acidemia [4, 19, 47]</td>
</tr>
<tr>
<td>Acute pancreatitis [1]</td>
</tr>
<tr>
<td>Age [2]</td>
</tr>
<tr>
<td>Gastroparesis/gastric distention/ileus [4]</td>
</tr>
<tr>
<td>Hemoperitoneum/pneumoperitoneum or intra-peritoneal fluid collections [5]</td>
</tr>
<tr>
<td>Hypothermia [6]</td>
</tr>
<tr>
<td>Increased APACHE-II or SOFA score [5, 7]</td>
</tr>
<tr>
<td>Increased head of bed angle [8-10]</td>
</tr>
<tr>
<td>Liver dysfunction/cirrhosis with ascites [1]</td>
</tr>
<tr>
<td>Major trauma [3, 6, 12]</td>
</tr>
<tr>
<td>Massive fluid resuscitation or positive fluid balance [2, 2, 3, 5, 6, 12, 13]</td>
</tr>
<tr>
<td>Mechanical ventilation [4]</td>
</tr>
<tr>
<td>Obesity or increased body mass index [2, 48, 1, 13]</td>
</tr>
<tr>
<td>PEEP >10 [1]</td>
</tr>
<tr>
<td>Polytransfusion [6]</td>
</tr>
<tr>
<td>Prone positioning [14-16]</td>
</tr>
<tr>
<td>Sepsis [2, 11]</td>
</tr>
<tr>
<td>Shock or hypotension [4, 45, 1, 6]</td>
</tr>
</tbody>
</table>
Risk Factors

Opinion- or Pathophysiology-based Risk Factors:
Bacteremia
Coagulopathy
Damage control laparotomy
Distended abdomen
Intra-abdominal or retroperitoneal tumors
Laparoscopy with excessive inflation pressures
Major burns
Massive incisional hernia repair
Peritoneal dialysis
Peritonitis
Pneumonia
Volvulus

Where APACHE-II indicates Acute Physiology and Chronic Health Evaluation-II; PEEP, positive end expiratory pressure; and SOFA, Sequential Organ Failure Assessment.
*References are presented if the presented risk factor is supported at least to some degree by primary literature. Those unsupported by primary literature are based on clinical judgment and/or pathophysiological rationale.
†The patient populations included in these studies included major trauma patients, general intensive care unit patients, severe acute pancreatitis patients, severe extremity injury patients, and surgical intensive care unit patients. Moreover, some of these studies addressed only patients that were mechanically ventilated, whereas others included mixed cohorts of patients with different ventilation statuses.
References for Risk Factors

• 2) We also RECOMMEND that studies of IAH or ACS adopt the trans-bladder technique as a standard IAP measurement technique\(^1\) (Unchanged Management Recommendation 2; [not GRADED]).

\(^1\)Risk IAP should be expressed in mmHg and measured at end-expiration in the complete supine position after ensuring that abdominal muscle contractions are absent and with the transducer zeroed at the level of the midaxillary line.
3) we **RECOMMEND** use of protocolized monitoring and management of IAP versus not (New Management Recommendation 3 [GRADE 1C]).
4) Efforts and/or protocols should be utilized to avoid sustained IAH in critically ill patients

GRADE 1C
5) We recommend decompressive laparotomy to decrease IAP in cases of overt ACS compared to strategies that do not use decompressive laparotomy in critically ill adults with ACS [GRADE 1D]
6) We recommend that among ICU patients with open abdominal wounds, conscious and/or protocolized efforts be made to obtain an early or at least same hospital stay closure [GRADE 1D]
7) We recommend that among critically ill/injured patients with open abdominal wounds, strategies utilizing negative pressure wound therapy should be used versus not [GRADE 1C]
Suggestions

• Updated consensus definitions and management statements were then derived using a modified Delphi method and the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) methodology. Quality of evidence was graded from high (A) to very low (D) and management statements from strong RECOMMENDATIONS (desirable effects clearly outweigh potential undesirable ones) to weaker SUGGESTIONS (potential risks and benefits of the intervention are less clear).
1) We suggest that critically ill or injured patients receive optimal pain and anxiety relief [GRADE 2D]
• 2) We suggest brief trials of neuromuscular blockade as temporizing measure in the treatment of IAH [GRADE 2D]
Consensus Management Statements - Suggestions

• 3) We suggest that the potential contribution of body position to elevated IAP be considered among patients with, or at risk of, IAH or ACS [GRADE 2D]
4) We suggest using a protocol to try and avoid a positive cumulative fluid balance in the critically ill or injured patient with, or at risk of, IAH, after the acute resuscitation has been completed and the inciting issues/source control have been addressed [GRADE 2C]
5) We suggest use of an enhanced ratio of plasma/packed red blood cells for resuscitation of massive hemorrhage versus low or no attention to plasma/packed red blood cell ratios [GRADE 2D]
Consensus Management Statements - Suggestions

• We suggest use of PCD to remove fluid (in the setting of obvious intraperitoneal fluid) in those with IAH/ACS when this is technically possible compared to doing nothing [GRADE 2C].

• We also suggest using PCD to remove fluid (in the setting of obvious intraperitoneal fluid) in those with IAH/ACS when this is technically possible compared to immediate decompressive laparotomy as this may alleviate the need for decompressive laparotomy [GRADE 2D]
Consensus Management Statements - Suggestions

• 7) We suggest that patients undergoing laparotomy for trauma suffering from physiologic exhaustion be treated with the prophylactic use of the open abdomen versus closure and expectant IAP management [GRADE 2D]
Consensus Management Statements - Suggestions

• 8) We suggest not to routinely utilize the open abdomen for patients with severe intraperitoneal contamination undergoing emergency laparotomy for intra-abdominal sepsis unless IAH is a specific concern [GRADE 2B]
9) We suggest that bioprosthetic meshes should not be routinely used in the early closure of the open abdomen compared to alternative strategies [GRADE 2D]
Updated consensus definitions and management statements were then derived using a modified Delphi method and the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) methodology. Quality of evidence was graded from high (A) to very low (D) and management statements from strong RECOMMENDATIONS (desirable effects clearly outweigh potential undesirable ones) to weaker SUGGESTIONS (potential risks and benefits of the intervention are less clear).
Consensus Management Statements

1) We could make no recommendation regarding use of abdominal perfusion pressure in the resuscitation/management of the critically ill/injured
• 2) We could make no recommendation regarding use of diuretics to mobilize fluids in hemodynamically stable patients with IAH after the acute resuscitation has been completed and the inciting issues/source control have been addressed
Consensus Management
Statements

• 3) We could make no recommendation regarding the use of renal replacement therapies to mobilize fluid in hemodynamically stable patients with IAH after the acute resuscitation has been completed and the inciting issues/source control have been addressed.
4) We could make no recommendation regarding the administration of albumin versus not, to mobilize fluid in hemodynamically stable patients with IAH after the acute resuscitation has been completed and the inciting issues/source control have been addressed.
5) We could make no recommendation regarding the prophylactic use of the open abdomen in non-trauma acute care surgery patients with physiologic exhaustion versus closing and expectant IAP management.
Consensus Management Statements

• 6) We could make no recommendation regarding use of the component separation technique to facilitate early fascial closure versus not
Intra-Abdominal Hypertension (IAH) / Abdominal Compartment Syndrome (ACS) Management Algorithm

Intra-Abdominal Hypertension (IAH)

- Patient has IAH (IAP ≥ 12 mmHg)
 - Initiate treatment to reduce IAP
 - Avoid excessive fluid resuscitation
 - Optimize organ perfusion (GRADE 1C)
 - Monitor IAP with serial measurements at least every 4 hours while patient is critically ill (GRADE 1C)
 - IAP < 12 mmHg consistently?
 - YES: IAH has resolved
 - Discontinue IAP measurements and monitor patient for clinical deterioration
 - NO: Continue medical treatment options to reduce IAP (GRADE 1C)
 - IAP > 20 mmHg with organ failure?
 - NO: Monitor IAP with serial measurements at least every 4 hours while patient is critically ill (GRADE 1C)
 - YES: IAH has resolved
 - Discontinue IAP measurements and monitor patient for clinical deterioration

Abdominal Compartment Syndrome (ACS)

- Does patient have Primary ACS?
 - NO: Patient has Secondary or Recurrent ACS
 - Is IAP > 25 mmHg with progressive organ failure?
 - YES: Continue medical treatment options to reduce IAP (GRADE 1C)
 - Measure IAP at least every 4 hours while patient is critically ill (GRADE 1C)
 - Perform balanced resuscitation of patient preload, contractility, and afterload using crystalloid / colloid / vasoactive medications
 - AVOID EXCESSIVE FLUID RESUSCITATION (GRADE 2D)
 - NO: IAH has resolved
 - Decrease frequency of IAP measurements and observe patient for deterioration
 - NO: IAH has resolved
 - Discontinue IAP measurements and monitor patient for clinical deterioration

Medical treatment options to reduce IAP

1. Improve abdominal wall compliance
 - Sedation & analgesia
2. Evacuate intra-luminal contents
 - Nasogastric decompression
3. Evacuate abdominal fluid collections
 - Paracentesis
4. Correct positive fluid balance
 - Avoid excessive fluid resuscitation
 - Diuretics
 - Colloids / hypertonic fluids
 - Hemodialysis / ultrafiltration
5. Organ Support
 - Optimize ventilation, alveolar recruitment
 - Use transmural (tm) airway pressures
 - \(P_{Pplat_{tm}} = P_{Pplat} - IAP \)
 - Consider using volumetric preload indices
 - If using PAOP/CVP, use transmural pressures
 - \(PAOP_{tm} = PAOP - 0.5 \times IAP \)
 - \(CVP_{tm} = CVP - 0.5 \times IAP \)

Definitions

- IAH - intra-abdominal hypertension
- ACS - abdominal compartment syndrome
- IAP - intra-abdominal pressure
- APP - abdominal perfusion pressure (MAP-IAP)
- Primary ACS - A condition associated with injury or disease in the abdomino-pelvic region that frequently requires early surgical or interventional radiological intervention
- Secondary ACS - ACS due to conditions that do not originate from the abdomino-pelvic region
- Recurrent ACS - The condition in which ACS redevelops following previous surgical or medical treatment of primary or secondary ACS
The choice (and success) of the medical management strategies listed below is strongly related to both the etiology of the patient’s IAH / ACS and the patient’s clinical situation. The appropriateness of each intervention should always be considered prior to implementing these interventions in any individual patient. The interventions should be applied in a stepwise fashion until the patient’s intra-abdominal pressure (IAP) decreases. If there is no response to a particular intervention, therapy should be escalated to the next step in the algorithm.

1. **Step 1**
 - **Evacuate intraluminal contents**
 - Insert nasogastric and/or rectal tube
 - **Evacuate intra-abdominal space occupying lesions**
 - Abdominal ultrasound to identify lesions
 - **Improve abdominal wall compliance**
 - Ensure adequate sedation & analgesia (GRADE 1D)
 - **Optimize fluid administration**
 - Avoid excessive fluid resuscitation (GRADE 2C)
 - **Optimize systemic / regional perfusion**
 - Goal-directed fluid resuscitation

2. **Step 2**
 - **Minimize enteral nutrition**
 - **Administer enemas (GRADE 1D)**
 - **Consider colonoscopic decompression (GRADE 1D)**
 - **Discontinue enteral nutrition**
 - **Abdominal computed tomography to identify lesions**
 - **Percutaneous catheter drainage (GRADE 2C)**
 - **Consider surgical evacuation of lesions (GRADE 1D)**
 - **Consider neuromuscular blockade (GRADE 1D)**
 - **Consider hemodialysis / ultrafiltration**

3. **Step 3**
 - **Initiate gastro-/colo-prokinetic agents (GRADE 2D)**
 - **Remove constrictive dressings, abdominal eschars**
 - **Aim for zero to negative fluid balance by day 3 (GRADE 2C)**
 - **Resuscitate using hypertonic fluids, colloids**
 - **Fluid removal through judicious diuresis once stable**
 - **Hemodynamic monitoring to guide resuscitation**

4. **Step 4**
 - If IAP > 25 mmHg and new organ dysfunction / failure is present, patient’s IAH / ACS is refractory to medical management. Strongly consider surgical abdominal decompression (GRADE 1D).